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Summary

In this paper the maximum likelihood equation of a logistic model
with multinomial distribution is presented. Two iterative methods, the
Fisher scoring method and the Newton-Raphson method are described.
The Hessian matrix of the likelihood function in a logistic model with
multinomial distribution is derived.
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1. Introduction

Categorical response data are usually modelled using the multinomial dis-
tribution. If the expected value of the random variable of this distribution
is mapped by the logistic transformation, we get a model which belongs
to the class of generalized linear models. The unknown parameters of such
models can be estimated by adopting various approaches. One of them is
the maximum likelihood method, leading to a set of equations which are
usually non-linear. The solution can be searched for using iterative meth-
ods such as the Fisher scoring method or the Newton-Raphson method.
The last method uses the Hessian matrix of the likelihood function. In this
paper an explicit derivation of the Hessian matrix of the likelihood function
in a logistic model with multinomial distribution is presented.
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2. Generalized linear model

Let us assume that y is the random vector observed in the experiment, and
the expected value of y is µ,

E(y) = µ.

Moreover, let η = η(µ) be the fixed transformation of the expected value
vector. If the image of this transformation belongs to the fixed linear sub-
space then we obtain the generalized linear model (see McCullagh and
Nelder, 1983, 1989) as follows

η(µ) = Xβ. (1)

If the transformation µ→ η is the identity then the model (1) is reduced
to the standard linear model. The transformation η(µ) is called the link
function. Matrix X is the known matrix of covariates and β is the vector
of unknown parameters.
The main aim in such a model (1) is to find the expected value µ as the

functions of covariates, which leads to estimation of the vector of unknown
parameters β.
The estimation can be carried out using various methods: geometric

(least squares method, weighted least squares method), or the maximum
likelihood method.

3. Iterative methods

If the distribution of the random variable observed in the experiment is
known (except for some parameters, which have to be estimated), the vec-
tor β can be estimated using the likelihood method provided that the trans-
formation µ→ η is invertible. The last assumption makes it possible to de-
termine the gradient s of the logarithm of the likelihood function l = l(µ,y)
with respect to β,

sT (β) =
∂l

∂βT
=
∂l

∂µT

(
∂η

∂µT

)−1 ∂η
∂βT
, (2)

(see Bakinowska, 2004). Putting the gradient (2) equal to the zero vector
provides the maximum likelihood equation which takes the form

s = 0. (3)
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Usually it is a non-linear equation. Its solution can be found using iterative
methods: the Newton-Raphson method or the Fisher scoring method. In
the Newton-Raphson method the consecutive approximations of the sought
solution are defined by the following formula

βn+1 = βn −H−1s(βn), (4)

with H = ∂sT /∂β being the matrix of second derivatives of the likelihood
function. This matrix is called the Hessian matrix of the likelihood function
and in (4) it is established for the approximation βn (see Agresti, 1984,
Appendix B).
The Fisher scoring method consists in replacing the Hessian matrix in

(4) by its expectation,which leads to the Fisher information matrix F

F = −E
(
∂2l

∂β∂βT

)
= −E

(
∂sT

∂β

)
= −E(H), (5)

(see Mardia et. al., 1979, p. 98 and Krzyśko 2000, p. 48). As a result the
consecutive approximations of the solution are related by the equation

βn+1 = βn + F−1s.

This approach is known in the literature as the Fisher scoring method (see
McCulloch and Searle 2001, p. 143)

4. Logistic transformation

In general the logistic transformation can be written in the following form

η(µ) = CT log (Lµ) , (6)

where matrix CT is usually the fixed matrix of contrasts or identity matrix,
L is a fixed binary matrix such that in the product Lµ it forms the selected
sums of elements of vector µ, and log(·) is the vector of natural logarithms
(compare Bakinowska and Kala, 2002a). The constructions of matrices L
and CT for discrete variables are given by Glonek and McCullagh (1995).
The generalized linear model with link function (6) is called the logistic
model.
The logistic transformation (6) is continuous and differentiable. The

matrix of the partial derivatives G = ∂η/∂µT (compare Grizzle et al.,
1969) is determined by the formula

G = G (µ) = CTD−1L,
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with D = (Lµ)δ being the diagonal matrix, having elements of the vector
Lµ on its diagonal. If CT in (6) is the matrix of contrasts, namely if this
matrix fulfils the condition CT1 = 0, then

G (µ)µ = 0. (7)

5. Logistic model with multinomial distribution

Let us assume that the m units are characterized by the joint value x
of some covariate. Now we assume that the units are classified in k sep-
arable categories. The results of counting the units in categories form a
k-dimensional random vector y = (y1, y2, ..., yk)T which has multinomial
distribution y ∼M(m,π), where m is the fixed number of units being clas-
sified, and π = (π1,π2, ..., πk)T is the vector of fixed probabilities fulfilling

k∑
j=1

πj = 1. (8)

The probability that within the sequence of m independent events one
can observe y1 events of the first category, y2 events of the second category,
etc. is expressed by

m!
y1!y2! · · · yk!

πy11 π
y2
2 · · ·π

yk
k .

The m units are characterized by a common value x. Hence we can
expect that the vector π is the value of some transformation π = π(x), i.e.

π = (π1(x), π2(x), ..., πk(x))T .

In order to determine the system of functions πj = πj(x), j = 1, 2, ..., k,
one can apply the logistic model.
Let p be the vector of the experimentally observed frequencies,

p = y(1/m), then E(p) = π (see Fisz, 1958, p. 151 or Mardia et al., 1979,
p. 57).
Assuming that the link function is the logistic transformation (6), the

model (1) now has the form

η = CT log (Lπ) = Xβ. (9)

Mapping the functions of probabilities πj = πj(x), j = 1, 2, ..., k as func-
tions of covariates comes down to estimating the vector of parameters β.
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6. Maximum likelihood method

According to the remarks in the previous paragraph, the ”shape” of the
joint distribution of the random variable observed in the experiment is
known. Hence the estimator of the parameter vector β in (9) can be found
using the maximum likelihood method. The maximum likelihood equation
(3) now has the form

s(β) =
∂l

∂β
=
∂ηT

∂β

(
∂ηT

∂π

)−1
∂l

∂π
= 0,

where l is the log-likelihood function of the multinomial distribution. We
will solve this equation using the iterative method.
In the Newton-Raphson method the consecutive approximations of the

searched solution are defined by (4). Now this formula contains the Hes-
sian matrix of the likelihood function (the matrix of second derivatives of
the likelihood function) of the logistic model with multinomial distribution.
What kind of problems are involved with using this estimation method? We
have to notice that in general the logistic transformation π → η is not in-
vertible. Hence the matrix of derivatives ∂ηT /∂π is not nonsingular, usually
the matrix of such derivatives is not a square matrix. The second problem is
connected with calculation of the Hessian matrix of the likelihood function
in the logistic model (9). The way to solve these problems will be shown in
the next paragraph.

7. Hessian matrix of the likelihood function

According to the remarks contained in the paper by Bakinowska and Kala
(2002b) the logistic transformation

η = CT∗ log (L∗π) (10)

is one-to-one if the matrices CT∗ and L∗ are of the form

CT∗ =

(
1 0T

0 CT

)
L∗ =

(
1T

L

)

and the matrix

G∗ = CT∗D
−1
∗ L∗ =

(
1T

G

)
=

(
1T

CTD−1L

)
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with D∗ = (L∗π)δ, D = (Lπ)δ being nonsingular matrix (the matrices CT

and L above are defined in section 4). The second condition is fulfilled if
CT1 = 0 and simultaneously matrix G is of full row rank k − 1. Then
Gπ = 0 and we can derive that the inverse of matrix G∗ has the form

G−1∗ =
(
π, πδGT

(
GπδGT

)−1 )
, (11)

where the vector π is the first column of matrix G−1∗ , and the columns of

matrix πδGT
(
GπδGT

)−1
form the next columns in G−1∗ .

For the transformation (10), π → η, the first element of vector η equals
log(1Tπ). Hence putting this element equal to zero is equivalent to the
equality 1Tπ = 1, which is required in determining the multinomial distri-
bution (see formula 8). This condition can be directly taken into account
in determining the generalized linear model. It is sufficient in the equality
η = X∗β, to assume that the matrix X∗ is of the form

X∗ =

(
0T

X

)
.

According to the assumptions given above the matrices of derivatives
are of the forms

∂πT

∂η
=
((
CT∗D

−1
∗ L∗

)−1)T
=
(
G−1∗

)T
(12)

and

∂ηT

∂β
= XT∗ .

Hence the gradient of the likelihood function l with respect to vector β is
of the form

s (β) =
∂ηT

∂β

∂πT

∂η

∂l

∂π
= XT∗

(
G−1∗

)T
π−δy. (13)

In order to use the Newton-Raphson method it is necessary to calculate
the Hessian matrix of l with respect to vector β,

H (β) =
∂s
∂βT
=
∂s
∂πT

∂π

∂ηT
∂η

∂βT
. (14)

The essential problem comes down to finding the matrix of derivatives
∂s/∂πT . Nevertheless, we have to notice that in gradient (13) the matrices
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(
G−1∗

)T and π−δ (see (11), (12)) are dependent on the vector of probabilities
π. Hence directly deriving the formula of the Hessian matrix (14) is difficult.
However, using the rules of matrix derivatives we can determine the j-th
column of the sought matrix . We obtain

∂s
∂πj
= XT∗

(
∂
(
G−1∗

)
∂πj

)T
π−δy +XT∗

(
G−1∗

)T ∂π−δ
∂πj
y,

where πj is the single probability. Since for any nonsingular matrix
F = (fij (x)) the equality

∂F−1

∂x
= −F−1∂F

∂x
F−1

holds, (see Harville, 1997, p. 307), we have

∂s
∂πj
= −XT∗

(
G−1∗

)T ∂GT∗
∂πj

(
G−1∗

)T
π−δy −XT∗

(
G−1∗

)T
π−δ
∂πδ

∂πj
π−δy

Recalling that matrix GT∗ is the matrix corresponding to the model (10)
we obtain

∂GT∗
∂πj
=

(
0,
∂LTD−1C
∂πj

)
=

(
0,−LTD−1∂ (Lπ)

δ

∂πj
D−1C

)
=

=
(
0,−LTD−1lδjD−1C

)
,

where lj is the j-th column of matrix L. Similarly,

π−δ
∂πδ

∂πj
π−δ = π−δeδjπ

−δ =
1
π2j
eδj ,

where ej is the j-th column of Ik.
On the other hand using the condition Gπ = 0 we have

(
G−1∗

)T
π−δ =

 1T(
GπδGT

)−1
G

 .
In consequence we obtain the vector of derivatives

∂s
∂πj
= XT∗

(
G−1∗

)T
LTD−1lδjD

−1C
(
GπδGT

)−1
Gy − (15)

−XT∗
(
G−1∗

)T
ej

(
yj
π2j

)
.
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Putting together the above obtained vectors for j = 1, 2, ..., k, as the
columns of the sought matrix we obtain the whole matrix ∂s/∂πT , which
multiplied by the product G−1∗ X∗ gives the Hessian matrix (14).

8. Fisher information matrix

Based on the Hessian matrix (14), according to the formula (5), we can
calculate the Fisher information matrix F. We can notice that E (y) = mπ,
and according to the equality Gπ = 0, taking the expected value of the
vector (15) the first element equals the zero vector for j = 1, 2, ..., k. Also
the expected values of the second element in (15) equal

−mXT∗
(
G−1∗

)T
ej
1
πj
, j = 1, 2, ..., k.

Hence

E

(
∂s
∂πT

)
= −mXT∗

(
G−1∗

)T
π−δ

and as a result we obtain the formula of the Fisher information matrix in
the logistic model with multinomial distribution:

F = −E
(
∂s
∂πT

)
G−1∗ X∗ = mX

T
∗

(
G−1∗

)T
π−δG−1∗ X∗. (16)

It is easy to derive that the product XT∗
(
G−1∗

)T in (16) can be written in
the following form

XT∗
(
G−1∗

)T
= XT

(
GπδGT

)−1
Gπδ.

Hence the gradient of the likelihood function and the Fisher information
matrix take the forms:

s (β) = XT
(
GπδGT

)−1
Gy,

F = mXT
(
GπδGT

)−1
X.

It is easy to notice that the formula of the Fisher information matrix is
simpler than the formula of the corresponding Hessian matrix.
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9. Conclusions

Iterative methods are widely used in the estimation of parameters of lo-
gistic models by general statistical packages (SAS, Genstat). However, the
method of iteration is very often imposed from above, when we choose some
available (open) procedures. When we use the logistic GLM procedure in
SAS, the Fisher scoring method is imposed from above. However there is
the possibility of choosing the optimization technique (in SAS and in Gen-
stat). In this paper the theory concerning the two iterative methods (their
advantages and disadvantages) is presented. On this basis, the reader can
decide which one of the methods is useful, or (based on the above theory)
can write their own computational procedure in any statistical package.
In the paper by Bakinowska and Zawieja (2011) two iterative methods

(Fisher scoring method and Newton-Raphson method) based on real and
simulated data were empirically compared for various logistic models (the
procedures were written in Turbo Pascal).
Summing up the results presented above we can state that the Hessian

matrix of the likelihood function in a logistic model with multinomial dis-
tribution is expressed by a very complex formula. In practice it facilitates
the estimation by using the Fisher scoring method. But it must be borne in
mind that the number of iterations in the Newton-Raphson method with
the complicated Hessian matrix is often smaller than in the Fisher scoring
method, and the time needed to obtain the solution is shorter. This is very
important in experiments in which a large quantity of data (observations)
are used and in models with a large number of categories.
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